- einelementige Menge
- одноэлементное множество
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Einelementige Menge — Als einelementige Menge, Einermenge oder (englisch) Singleton werden in der Mathematik diejenigen Mengen bezeichnet, die genau ein Element enthalten. Eine Menge ist also einelementig, genau dann, wenn sie die Mächtigkeit eins hat. Beispielsweise… … Deutsch Wikipedia
Menge (Mathematik) — Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (beispielsweise Zahlen) zu einer Menge zusammen. Eine Menge muss kein Element enthalten (diese Menge heißt die… … Deutsch Wikipedia
Offene Menge — In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen… … Deutsch Wikipedia
Konkave Menge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Nichtkonvexe Menge — eine konvexe Menge eine nichtkonvexe Menge In der Mathematik heißt eine geometrische Figur oder allgemeiner eine Teilmenge eines … Deutsch Wikipedia
Konvexe Menge — eine konvexe Menge eine nichtkonvexe Menge In der … Deutsch Wikipedia
Diskrete Menge — Diskretheit (lat. discretus „unterschieden“, „getrennt“) bezeichnet allgemein eine räumliche oder zeitliche Trennung von Objekten oder Ereignissen. Ein diskretes Signal besteht aus zeitlich oder räumlich getrennten Teilen, zum Beispiel sind… … Deutsch Wikipedia
Perfekte Menge — In der Analysis ist ein Häufungspunkt einer Menge anschaulich ein Punkt, der unendlich viele weitere Punkte in seiner Nähe hat. Ein Verdichtungspunkt einer Folge ist ein Punkt, der Grenzwert einer Teilfolge ist. Beide Begriffe sind eng… … Deutsch Wikipedia
Paarmenge — Als Paarmenge oder Zweiermenge bezeichnet man in der Mengenlehre die durch {a,b} symbolisierte Menge, die genau die Objekte a und b als Elemente enthält. Es gilt also: . In der älteren, naiven Mengenlehre, die noch nicht axiomatisiert war, war… … Deutsch Wikipedia
Differenzmenge — Die Mengenlehre ist ein grundlegendes Teilgebiet der Mathematik. Zahlreiche mathematische Disziplinen werden heute auf der Mengenlehre aufgebaut, darunter die Algebra, Analysis, Maßtheorie, Stochastik und Topologie. Inhaltsverzeichnis 1… … Deutsch Wikipedia
Durchschnitt (Mengentheorie) — Die Mengenlehre ist ein grundlegendes Teilgebiet der Mathematik. Zahlreiche mathematische Disziplinen werden heute auf der Mengenlehre aufgebaut, darunter die Algebra, Analysis, Maßtheorie, Stochastik und Topologie. Inhaltsverzeichnis 1… … Deutsch Wikipedia